Splunk Use Cases

Tools, Tactics and Techniques

Content Sources

Consolidated and Curated by David Wells (@Epicism1)

Content Contributors:

- David Veuve (@davidveuve) https://www.davidveuve.com
- Jim Apger (<u>@JimApger</u>)
- Marquis Montgomery
- Maybe others! We will update this doc

Recommended Resources:

- <u>https://davidveuve.com/splunk.html</u>
- <u>https://davidveuve.com/talks/ninjutsu-part-six/Security-Ninjutsu-Part-Six-Slides-to-Source-Materials.pdf</u>

Risk Scoring

risk_score: See scoring risk_object: The object to track risk_object_type: The object type risk_impact: Info to Critical risk_liklihood: How likely event is this to occur risk_id: This risk's unique identifier risk_kcstage: This risk's kill chain stage

Step 3 (Example): Add Modifiers to Enhance the Risk Based on Another Field's values:
eval risk = case(NumWhoReportIn>100, risk+10, risk)
eval risk = case(like(Groups, "%OU=Groups,OU=IT Security,%"), risk + 10, risk)
eval risk = case(like(title, "VP %"), risk+10, like(title, "Chief %"), risk+100, 1=1,
risk)

Risk Alerting I

Option 1: Risk Baselining with Confidence Checks
This verifies that the user is 3x their standard deviation AND there are at least 7 previous days worth of risk scores
Risk Baselining with Confidence Checking
<Pull risk scores>
bucket_time span=1d
stats sum(risk_score) as risk_score by user, _time
stats count as num_data_samples max(eval(if(_time >= relative_time(now(), "-1d@d"), risk_score,null))) as latest
avg(eval(if(_time<relative_time(now(), "-1d@d"), risk_score,null))) as avg stdev(eval(if(_time<relative_time(now(), "-1d@d"), risk_score,null))) as
stdev by user
where latest > avg + stdev * 3 AND num_data_samples > 7 AND latest > avg * 2

Option 2: Identify When A User's # of Risk Kill Chain (or category) is Above 2 and the Number of Unique Risk Signatures is Above 1: | stats sum(risk_score) as risk_score_aggregate values(risk_id) as risk_id values(risk_description) as risk_description values(risk_kcstage) as risk_kcstage by risk_object | where mvcount(risk_kcstage)>2 AND mvcount(risk_id)>1

Option 3: Calculate a User's 30 Day Risk Score As a Baseline and Identify When Today's is 3x Higher Than the Average:

index=risk earliest=-30d | stats values(source) as search_names sum(risk_score) as thirty_day_risk sum(eval(if(_time > relative_time(now(), "-1d"),risk_score,0))) as one_day_risk by risk_object

| eval threshold_1day = 500, threshold_30day = 1200

| eventstats avg(thirty_day_risk) as avg_thirty_day_risk stdev(thirty_day_risk) as stdev_thirty_day_risk

| where one_day_risk>threshold_1day OR thirty_day_risk>threshold_30day OR thirty_day_risk> (avg_thirty_day_risk + 3 * stdev_thirty_day_risk)

Risk Alerting II

Option 4: Calculate if a User is Above the One Day Risk Threshold, the 30 Day Risk Threshold or More Than 3x Its Own Standard Deviation:

index=risk earliest=-30d
| stats values(source) as search_names sum(risk_score) as thirty_day_risk sum(eval(if(_time > relative_time(now(), "-1d"),risk_score,0))) as
one_day_risk by risk_object
| eval threshold_1day = 500, threshold_30day = 1200
| eventstats avg(thirty_day_risk) as avg_thirty_day_risk stdev(thirty_day_risk) as stdev_thirty_day_risk
| where one_day_risk>threshold_1day OR thirty_day_risk stdev(thirty_day_risk) as stdev_thirty_day_risk>(avg_thirty_day_risk + 3 *
stdev_thirty_day_risk)
| eval risk_score_reason = case(one_day_risk>threshold_1day, "One Day Risk Score above " . threshold_1day, thirty_day_risk>threshold_30day
." on " . strftime(now(), "%m-%d-%Y"), "Thirty Day Risk Score above " . threshold_30day, 1=1, "Thirty Day Risk Score more than three standard
deviations above normal (>" . round((avg_thirty_day_risk + 3 * stdev_thirty_day_risk),2) . ")")
| fields - avg* stdev*

Detect Rare Actions I

Good: Identify When Something Is X Times Past Their Standard Deviation:

<datasource> | bucket _time span=1d | stats count by <monitored> _time | stats max(eval(if(_time >= relative_time(now(), "-1d@d"),count, null))) as latest avg(eval(if(_time < relative_time(now(), "-1d@d"),count, null))) as stdev(eval(if(_time < relative_time(now(), "-1d@d"),count, null))) as stdev by <monitored> | where latest > avg + 6*stdev

Better: Adding Relative Filters to Statistical Assessments:

tag=authentication | bucket _time span=1d | stats dc(dest) as count by user, _time | stats count as num_data_samples max(eval(if(_time >= relative_time(now(), "-1d@d"), count,null))) as latest avg(eval(if(_time<relative_time(now(), "-1d@d"), count,null))) as avg stdev(eval(if(_time<relative_time(now(), "-1d@d"), count,null))) as stdev by user | where latest > avg + stdev * 3 AND num_data_samples > 7 AND latest > avg * 2

Example: The Above Command With # Credit Cards Viewed:

index=crm_logs viewed card | bin span=1d_time | stats dc(card_id) as count by user_time | stats count as num_data_samples max(eval(if(_time >= relative_time(now(), "1d"), count, null))) as latest avg(eval(if(_time < relative_time(now(), "-1d"),count,null))) as average, stdev(eval(if(_time < relative_time(now(), "-1d"),count,null))) as stdev by user | where latest > 2*stdev+average AND num_data_samples >7 AND latest > avg * 2

Detect Rare Actions II

Over The Time Period, Has Anyone Done X More Than Usual (Using Inter-Quartile Range Instead of Standard Deviation)

<datasource>
| bucket_time span=1d
| stats count by <monitored>
| eventstats perc25(count) as perc75(count) as perc75 by <monitored> | where count > perc75 + (perc75 - perc25) * 1.5

Over The Time Period, Has Anyone Done X More Than Usual (Using Inter-Quartile Range Instead of Standard Deviation) - tStats Version | tstats count from datamodel=<datamodel> where earliest=-30d@d by <monitored>_time span=1d | eventstats perc25(count) as perc25 perc75(count) as perc75 by <monitored> | where count > perc75 + (perc75 - perc25) * 1.

Detect Rare Actions III: Using tStats

Unusual Detection with tStats

| tstats count latest(_time) as latest from datamodel=<...> where earliest=-30d@d by <monitored> | eventstats sum(count) as total | where count / total < 1/20000 AND latest > relative_time(now(), "-1d@d")

Detect unusual errors

| tstats count latest(_time) as latest from datamodel=Example_AWS_Security where earliest=-30d@d by cloudtrail.errorCode | eventstats sum(count) as total | where count / total < 1/20000 AND latest > relative_time(now(), "-1d@d")

Detect users with an unusual MFA Status

| tstats count latest(_time) as latest from datamodel=Example_AWS_Security where earliest=-30d@d by cloudtrail.mfaAuthenticated cloudtrail.userIdentity.arn | eventstats sum(count) as total | where count / total < 1/20000 AND latest > relative_time(now(), "-1d@d")

Identifying First Time Event Attacks

Detect If This Is The first time that X has been Seen:

*Search Criteria | stats earliest(_time) as earliest latest(_time) as latest by <field(s)> | eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

Detect if This Is The First Time Seen With tStats:

| tstats summariesonly=t allow_old_summaries=t min(_time) as earliest max(_time) as latest from datamodel=<..> by <..> | where earliest > relative_time(now(), "-1d@d")

First Logon to New Server sourcetype=win*security

| stats earliest(_time) as earliest latest(_time) as latest by user, dest | eval isOutlier=if(earliest >= relative_time(now(), "-td@d"), 1, 0)

Authentication against a New Domain Controller sourcetype=win*security

| stats earliest(_time) as earliest latest(_time) as latest by user, dc | eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

First Access to a New Source Code Repository sourcetype=source_code_access

| stats earliest_time) as earliest latest(_time) as latest by user, repo | eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

First External Email Claiming to be Internal from Server

sourcetype=cisco:esa src_user=*@mycompany.com src!=10.0.0.0/8
| stats earliest(_time) as earliest latest(_time) as latest by user, src
| eval isOutlier=if(earliest >= relative time(now(), "-1d@d"), 1, 0)

Familiar Filename on a New Path

Sourcetype=win*security EventCode=4688 `IncludeMicrosoftFiles`

| stats earliest(_time) as earliest latest(_time) as latest by filename, path | eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

New Database Table Accessed

sourcetype=database

| stats earliest(_time) as earliest latest(_time) as latest by user, table | eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

New Interactive Logon by Service Account

sourcetype=win*security user=srv_* Logon_Type=2 OR .. 11 .. 12
| stats earliest(_time) as earliest latest(_time) as latest by user, dest
| eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

New Parent Process for cmd.exe

sourcetype=win*security EventCode=4688 filename=4688

| stats earliest_time) as earliest latest(_time) as latest by parent_process | eval isOutlier=if(earliest >= relative_time(now(), "-1d@d"), 1, 0)

Example: Detect When Users Take High Risk Actions From A New Country:

| tstats summariesonly=t allow_old_summaries=t min(_time) as earliest max(_time) as latest from datamodel=Example_AWS_Security where cloudtrail.HighRiskAPICalls>0 by cloudtrail.sourceIPAddress_Contry | where earliest > relative_time(now(), "-1d@d")

Detect Rare Events I: Compared to all events

Detect Very Rare Events:

<datasource> earliest=-30d@d
| stats count latest(_time) as latest by <monitored> [optionally: <entity>]
| eventstats sum(count) as total [optionally: by <entity>]
| where count / total < 1/20000 AND latest > relative_time(now(), "-1d@d")

Example: Detect Rare API Calls (eventName):

sourcetype=aws:cloudtrail earliest=-30d@d | stats count by eventName | eventstats sum(count) as total | where count / total < 1/20000 AND latest > relative_time(now(), "-1d@d")

Example: Detect Users Making Rare API Calls:

sourcetype=aws:cloudtrail earliest=-30d@d | stats count by eventName, userIdentity.arn | eventstats sum(count) as total by userIdentity.arn | where count / total < 1/20000 AND latest > relative_time(now(), "-1d@d")

Detect Rare Events II: Compared to Itself

This Command Can Be Used To Identify Higher-risk IP Addresses Based On The Uniqueness of the IPS signature:

tag=ids tag=attack

| bucket _time span=1d

| stats count by severity signature dest _time

stats sum(count) as count avg(count) as avg stdev(count) as stdev sum(eval(if(_time > relative_time(now(), "-1d"),

count, 0))) as recent_count min(_time) as earliest by severity signature dest

eventstats avg(avg) as avg_num_per_dest avg(earliest) as avg_earliest sum(count) as sig_wide_count

sum(recent_count) as sig_wide_recent_count by signature

where NOT (avg_earliest < relative_time(now(), "-1y") AND sig_wide_recent_count / sig_wide_recent_count < 0.05 AND priority <=3)

Alert When Users Who Usually Log Into Very Few Systems All Of A Sudden Log Into a Lot:

| tstats summariesonly=true count from datamodel=Authentication where earliest=-30d@d groupby Authentication.dest Authentication.user _time span=1d

| rename AuthenEcaEon.dest as dest AuthenEcaEon.user as user

| eval isRecent=if(_time>relative_time(now(),"-1d"), "yes", "no")

| stats avg(eval(if(isRecent="no",count,null))) as avg first(count) as recent by user, dest

| eventstats count(eval(if(avg>0,"yes",null))) as NumServersHistorically count(eval(if(recent>0,"yes",null))) as NumServersRecently by user

| eval Cause=if(isnull(avg) AND NumServersHistorically!=0, "This is the first logon to this server", "")

| eval Cause=if(NumServersRecently>3 AND NumServersHistorically * 3 < NumServersRecently,

mvappend(Cause,"Substantial increase in the number of servers logged on to"), Cause)

| where Cause!=""

Risk Data Modelling Tips & Tricks

Good: Combine Multiple Data Sources Together Via tstats:

tstats prestats=t summariesonly=t count(Malware_Attacks.src) as malwarehits from datamodel=Malware where Malware_Attacks.action=allowed groupby Malware_Attacks.src

tstats prestats=t append=t summariesonly=t count(web.src) as webhits from datamodel=Web where web.http_user_agent="shockwave flash" groupby web.src

tstats prestats=t append=t summariesonly=t count(All_Changes.dest) from datamodel=Change_Analysis where sourcetype=carbon_black OR sourcetype=sysmon groupby All_Changes.dest

| rename web.src as src Malware_Attacks.src as src All_Changes.dest as src

| stats count(Malware_Attacks.src) as malwarehits count(web.src) as webhits count(All_Changes.dest) as process_launches by src

Better: Avoid "| transaction" Commands Via Eventstats and Stats*:

sourcetype=ironport OR sourcetype=cisco:esa | eventstats values(TLS) as TLS values(src_ip) as src_ip values(...) as ... by ICID | stats values(icid) AS icid values(src*) AS src* by mid | eval recipient_count=mvcount(recipient)

Example: Avoid "| transaction" Commands Via eventstats and Stats (Full):

sourcetype=cisco:esa* earliest=-20m

| eventstats values(sending_server) as sending_server values(sending_server_dns_status) as sending_server_dns_status values(sending_server_dkim) as sending_server_dkim values(sending_server_tls_status) as sending_server_tls_status values(sending_server_tls_cipher) as sending_server_tls_cipher values(sending_server_whitelist) as sending_server_whitelist by icid

| stats min(_time) as _time max(_time) as email_processing_complete_time count(eval(searchmatch("Message Finished MID"))) as complete_count count(eval(searchmatch("Start MID"))) as start_count values(d) as d values(message_id) as message_subject) as message_subject values(mid) as mid values(recipient) as recipient values(sender) as sender values(spam_status) as spam_status values(encoding) as encoding values(subject) as subject values(attachment) as attachment values(queue) as queue values(message_scan_error) as message_scan_error values(message_size) as message_size values(sending_server) as sending_server_values(sending_server_dhs_status) as sending_server_dns_status values(sending_server_tls_status) as sending_server_tls_status) as sending_server_tls_cipher) as sending_server_tls_cipher values(sending_server_tls_status values(sending_server_tls_status values(sending_server_tls_status values(sending_server_tls_cipher) as sending_server_tls_cipher values(sending_server_tls_status values(sending_server_tls_s

| where complete_count > 1 AND start_count > 1 AND email_processing_complete_time >= relative_time(now(), "-7m@m") AND email_processing_complete_time < relative_time(now(), "-2m@m") "-2m@m")

| collect index=parsed_emails

*This solution is 3x faster than Transaction commands.

Tips and Tricks

Use a Subsearch as Search Input:

[|input|ookup inscope_ad_users.csv |stats values(sAMAccountName) as search |eval search= "(user=" . mvjoin(search, " OR user=") . ")"]

Pull and Update a Lookup to Act as a Cache:

tag=authentication | stats earliest(_time) as earliest latest(_time) as

latest by

user, dest

| inputlookup append=t login_tracker.csv | stats min(earliest) as earliest max(latest) as

latest by

user, dest

where latest > relative_time(now(), "-90d")
outputlookup sample_cache_group.csv
where earliest >= relative_time(now(), "-1d@d")

Using Eval Within a Stats to 'tag' or Count Data of Interest:

tag=authentication | stats count(eval(action="success")) as successes count(eval(action="failure")) as failures values(eval(if(action="success",user,null))) as "Successful Users" count(eval(if(searchmatch("example of log message"), 1, null))) as "example hits" count(eval(if(match(email, "\@buttercupgames\.com"),1,null))) as buttercup_emails [pcr(2)]
args = in,out
definition = eval pcr_total=\$in\$+\$out\$\
| eval pcr_ratio= ((\$out\$-\$in\$)/pcr_total) \
| eval pcr_source_fraction = ((1 + pcr_ratio)/2), pcr_dest_fraction = ((1 - pcr_ratio)/2) \
| eval pcr_range = case(pcr_ratio > 0.4, "Pure Push", pcr_ratio > 0, "70:30 Export", pcr_r
Exchange", pcr_ratio >= -0.5, "3:1 Import", pcr_ratio > -1, "Pure Pull")
iseval = 0

Linear Trendline Macro:

[lineartrend(2)]

args = x,y

Producer-Consumer Ratio Macro:

definition = eventstats count as numevents sum(x) as sumX sum(y) as sumY sum(eval(x, y)) as sumXY sum(eval(x, x)) as sumX2 sum(eval(y, y)) as sumY2 \

eval slope=((numevents*sumXY)- (sumX*sumY))/ ((numevents*sumX2) - (sumX*sumX)) \

| eval yintercept= (sumY-(slope*sumX))/numevents\ | eval newY=(yintercept + (slope*\$x\$))\ eval R=((numevents*sumXY) - (sumX*sumY))/ sqrt(((numevents*sumX2)-(sumX*sumX))* ((numevents*sumY2)-(sumY*sumY)))\ | eval R2=R*R iseval = 0

5 Week Forecast Macro:

[forecast5w(4)] args = val,confidence,reltime,days definition = eval w=case(\ (_time>relative_time(now(), "\$reltime\$@d-5w-30m") AND_time<=relative_time(now(5w+\$days\$d+30m")), 5, \ (_time>relative_time(now(), "\$reltime\$@d-4w-30m") AND_time<=relative_time(now(4w+\$days\$d+30m")), 4,\

Individual features to Cluster Machine Learning in 3 easy steps

Step 1: Example of Taking Multiple Values of Interest and Calculating Their Count, Distinct Count, Sum, etc. to Provide a Historic Trend.

```
index=sfdc
```

| bucket _time span=1d stats dc(eval(if(like(URI_ID_DERIVED, "00140000%"), URI_ID_DERIVED, null))) as NumAccounts dc(eval(if(like(URI_ID_DERIVED, "0063300%"), URI ID DERIVED, null))) as NumOpts sum(ROWS_PROCESSED) as ROWS_PROCESSED count(eval(EVENT_TYPE="Login")) as Logins count(eval(EVENT_TYPE="Report")) as ReportsIssued count(eval(EVENT TYPE="API" OR EVENT_TYPE="BulkApi" OR EVENT_TYPE="RestApi")) as APICalls sum(DB_CPU_TIME) as DB_CPU_Time sum(RUN TIME) as RUN TIME sum(DB_BLOCKS) as db_blocks dc(CLIENT_IP) as UniqueIPs dc(ORGANIZATION ID) as NumOrganizations dc(ENTRY_POINT) as ApexExecution_Entry_Type by USER ID time

Step 2: Then Calculate the 'Z' Score (e.g. How Many Stdev Away From Avg It Is) Per User; Reduce the Number of Fields to 5 for Processing Efficiency; Then Machine Learning Magic It:

```
<Previous search results>
| eventstats avg(*) as AVG_* stdev(*) as STDEV_* by
USER_ID
| foreach *
```

[eval "Z_<>" = ('<>' - 'AVG_<>') / 'STDEV_<>'] | fields - AVG_* STDEV_* | fillnull | fit PCA k=5 Z_* | fit KMeans k=5 PC_* | eventstats max(clusterDist) as maxdistance p25(clusterDist) as p25_clusterDist p50(clusterDist) as p50_clusterDist p75(clusterDist) as p75_clusterDist dc(USER_ID) as NumIDs count as NumEntries by cluster | eval MaxDistance_For_IQR= (p75_clusterDist + 12 * (p75_clusterDist - p25_clusterDist)) | where NumEntries < 5 OR clusterDist > MaxDistance_For_IQR

Peer Group Comparison

The Following Search Compares a User's Actions to Their Peer Group. Peer Groups Can be Defined Via Active Directory Groups or Workday Type Platforms:

<Event that you want to verify if it's the first time that you've seen it> stats earliest(_time) as earliest latest(_time) as latest by user, dest inputlookup append=t sample_cache_group.csv stats min(earliest) as earliest max(latest) as latest by user, dest outputlookup sample_cache_group.csv lookup peer_group.csv user OUTPUT peergroup makemv peergroup delim="," multireport [| stats values(*) as * by user dest] [| stats values(eval(if(earliest>=relative_time(now(),"-1d@d"),dest ,null))) as peertoday values(eval(if(earliest<relative_time(now(),"-1d@d"),dest ,null))) as peerpast by peergroup dest] eval user=coalsce(user, peergroup) fields - peergroup stats values(*) as * by user dest where isnotnull(earliest) isOutlier= if(isnotnull(earliest) AND earliest>=relative_time(now(),"-1d@d") AND isnull(peerpast),1,0)

Geolocation Comparison

The following search compares the longitude and latitude of a user and calculates the risk:

index=bro_http ("public_domain1" OR "public_domain2" OR "public_domain.co.uk") (hv_user1 OR hv_user2 OR hv_user3 OR hv_user4) fields src_ip bin span=1d _time rex field=_raw "(?mi)(username|user|login)=(?<uname>.{0,35}?)(@|&)" eventstats count as mul._ip by _.me, uname, src_ip where $mul._ip > 1$ stats count as count by _.me, uname, src_ip geoip src_ip fillnull value="-" where src_ip_region_name != "-" eventstats sum(count) as count_per_user by _.me, uname eval src_ip_lat_w_avg = src_ip_la.tude * (count/count_per_user) eval src_ip_lon_w_avg = src_ip_longitude * (count/count_per_user) eval src_ip_lat_w_stdev = sqrt((src_ip_la.tude * src_ip_la.tude)/count_per_user) * (count/count_per_user) eval src_ip_lon_w_stdev = sqrt((src_ip_longitude * src_ip_longitude)/count_per_user) * (count/count_per_user) eventstats sum(src_ip_lat_w_avg) as src_ip_lat_avg2, sum(src_ip_lon_w_avg) as src_ip_lon_avg2, sum(src_ip_lat_w_stdev) as src_ip_lat_stdev2, sum(src_ip_lon_w_stdev) as src_ip_lon_stdev2 by _time, uname eval src_ip_lat_threshold_low2 = src_ip_lat_avg2 -- src_ip_lat_stdev2 eval src_ip_lat_threshold_high2 = src_ip_lat_avg2 + src_ip_lat_stdev2 eval src_ip_lon_threshold_low2 = src_ip_lon_avg2 -- src_ip_lon_stdev2 eval src_ip_lon_threshold_high2 = src_ip_lon_avg2 + src_ip_lon_stdev2 where src_ip_la.tude > src_ip_lat_threshold_high2 OR src_ip_la.tude < src_ip_lat_threshold_low2 OR src_ip_longitude > src_ip_lon_threshold_high2 OR src_ip_longitude < src_ip_lon_threshold_low2</pre> stats count as geo_count by _time, uname, src_ip_city, src_ip_region_name, src_ip_country_code

Future Value Slides

One day...

User Risk Modifiers

Add a Risk Multiplier To A User Based On Their Title:

| inputlookup LDAPSearch | eval risk = 1 | eval risk = case(NumWhoReportIn>100, risk+10, risk) | eval risk = case(like(Groups, "%OU=Groups,OU=IT Security,%"), risk + 10, risk) | eval risk = case(like(Etle, "VP %"), risk+10, like(Etle, "Chief %"), risk +100, 1=1, risk) | fields risk sAMAccountName | outputlookup RiskPerUser

Analysis of User Risk:

[... insert your Privileged User AcEvity Search ...]

stats count by user

| lookup RiskPerUser sAMAccountName as user

| eval AggRisk = risk * count

| eval DescripEveRisk = case(AggRisk > 100, "very high", AggRisk>30, "medium", AggRisk>5, "low", 1=1, "very low")

Microsoft's Five types of Alerts

Alerts

- These activities have a significant service impact and are rarely due to benign activity. For example, a new account being granted Domain Administrator privileges would be classified as an alert.
- An alert immediately generates an escalation / page to be reviewed.

Atomics

- These are activities that are significant, and unlikely to be benign, but don't risk the enterprise if they're not responded to in short order.
- For example, a new local account being created on an important system.
- All atomics should be reviewed, but doing so can happen in their own time.

Behavioral

- These activities may occur due to benign service operations but may also indicate unauthorized activity.
- An example of a Behavioral indicator is a new process executing that has never been observed across the service.
- These won't be reviewed on their own, but will show up if grouped with other behaviorals or atomics through the clustering described in the post below.

Contextual

- These activities occur very frequently due to benign activity but have forensic value during an investigation. A net.exe process start is one type of Contextual indicator.
- These would never be reviewed directly on their own, but are available to analysts to provide starting points and situational awareness during an investigations.

Source: https://blogs.technet.microsoft.com/office365security/defending-office-365-with-graph-analytics/

Saved Searches

\circ ensure that saved searches are not skipped, enable the option "realtime_schedule =1"

Controls the way the scheduler computes the next execution time of a scheduled search.

If this value is set to 1, the scheduler bases its determination of the next scheduled search execution time on the current time.

- If this value is set to 0, the scheduler bases its determination of the next scheduled search on the last search execution time. This is called continuous scheduling.
- If set to 1, the scheduler might skip some execution periods to make sure that the scheduler is executing the searches running over the most recent time range.
- If set to 0, the scheduler never skips scheduled execution periods.
- However, the execution of the saved search might fall behind depending on the scheduler's load. Use continuous scheduling whenever you enable the summary index option.
- The scheduler tries to execute searches that have realtime_schedule set to 1 before it executes searches that have continuous scheduling (realtime_schedule = 0).
- * Defaults to 1